Loss of SIRT3 leads to a compensatory shift in cellular metabolism promoting cancer cell growth

نویسندگان

  • Eoin McDonnell
  • Olga R Ilkayeva
  • Robert D Stevens
  • Michael J Muehlbauer
  • James R Bain
  • Tomas C Becker
  • Matthew D Hirschey
چکیده

Background Mechanisms involved in regulating metabolic reprogramming in cancer cells are not fully understood. Acetylation is emerging as a major regulator of mitochondrial metabolism and may contribute to metabolic derangements that occur in cancer cells. Sirtuin-3, (SIRT3), is the main mitochondrial deacetylase and it serves to maintain mitochondrial energy homeostasis by deacetylating and activating mitochondrial proteins. Loss of SIRT3 leads to altered cellular metabolism including reduced ATP production and decreased fatty acid oxidation [1]. Remarkably, reduced SIRT3 expression is associated with cancer in patients and Sirt3 knockout mice [2]. However, the mechanism of mitochondrial protein hyperacetylation and the sub-sequent increased susceptibility to tumor formation remains unknown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of metabolism by sirtuins

Mitochondrial sirtuins are NAD-dependent enzymes that bind and regulate numerous metabolic pathways within the mitochondria. For example, SIRT3 functions as an NAD-dependent deacetylase that binds and activates numerous oxidative pathways. We have discovered that sirtuins regulate metabolic pathways important in tumor cell metabolism. One hallmark feature of tumor cells is a shift from oxidativ...

متن کامل

Different Cytotoxic Effects of Caper from Different Geographical Regions May Be Related to Changes in Mitochondrial Sirt3

Background and objectives: Beside its nutritional role, caper (Capparis spinosa) has long been used as an analgesic, anti-inflammatory, anti-diabetic and anti-cancer remedy. In the present study, we tested whether this plant can make effective changes in Sirt3 and mitochondrial function in colorectal carcinoma cell line since mitochondrial dysfunction has long been imp...

متن کامل

The role of SIRT3 in regulating cancer cell metabolism

Background Sirtuins are a family of NAD-dependent deacetylase, deacylase, and/or mono-ADP ribosyltransferase enzymes involved in regulation of many biological processes. Mammals contain seven sirtuins, three of which are localized to the mitochondria (SIRT3-5). SIRT3 has been shown to be the major mitochondrial deacetylase that regulates metabolic enzymes and promotes oxidative metabolism and e...

متن کامل

SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2

Lung cancer is the leading cause of death worldwide and associated with dismal prognoses. As a major mitochondrial deacetylase, SIRT3 regulates the activity of enzymes to coordinate global shifts in cellular metabolism and has important implications for tumor growth. Its role as a tumor suppressor or an oncogene in lung cancer is unclear, especially in non-small cell lung carcinoma (NSCLC). To ...

متن کامل

A journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3

Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014